MACHINE INTELLIGENCE UNIT-4

Particle Swarm Optimisation

feedback/corrections: vibha@pesu.pes.edu

VIBHA MASTI

© vibhas notes 2021

Swarm

- · Loosely structured collection of interacting agents
- · Agents contribute to and benefit from their group
- Eq: swarm of bees, ant colony,
 Flock of birds, human wowds, cells &
 molecules

Swarm Intelligence

· No centralised control structures

PARTICLE SWARM OPTIMISATION

- · Population-based stochastic optimisation technique
- · Potential solutions particles in the problem space
- Particles fly through the problem
 space by following current optimum
 particles
- · Each particle searches for optimal solution vibhas notes 2021

Fitness value = $f(x,y) = x^2 + y^2$

Run 1

TABLE 1: Initial positions, velocity, and best positions of all particles.

Particle No.	Initial Positions		Velocity		Best Solution	Best Position		Fitness
	X	У	x	У	Desi Solution	x	У	Value
P1	1	1	0	0	1000	- -	-	2 2 0.5
P ₂	-1				1000	-		
P3	0.5	-0.5	0	0	1000	-		
P4	1	-1	0	0	1000	-	16	2
P5	0.25	0.25	0	0	1000	-	. e	0.125

	Pı'	5	(0.25	, 0.	25)		new	PB	<u> </u>	
	f	(P_i)) = D.	125						
l	and	So	m							
Blobal be	est value Current	e = 0.125 Position	and Global b	est posi Update	tion = 0.28 d Velocity	5, 0.25 Persona	l Best		Updatec	l Position
Particle (i)	xi(t)	yi(t)	Fitness value f(xi(t), yi(t))	vi(t+1)	vi(t+1)	Position P _b (i)	P _b (i)	global best value	xi(t+1)	yi(t+1)
1	1	1	2	-0.75	-0.75	1	1	0.125	0.25	0.25
2	-1	1	2	1.25	-0.75	-1	1	0.125	0.25	0.25
3	0.5	-0.5	0.5	-0.25	0.75	0.5	-0.5	0.125	0.25	0.25
4	1	-1	2	-0.75	1.25	1	-1	0.125	0.25	0.25
5	0.25	0.25	0.125	0	0	0.25	0.25	0.125	0.25	0.25

- 1. Transportation planning 2. Neural networks 3. Clustering